Euromillions | Results for May 26 | 15 25 37 38 41 (rollover!)
Lucky Clover
Statistics for Timemania
Statistics of real draws
Timemania statistics only consider draws carried out since May 7, 2022, when the rules/matrix changed (participating teams were changed).
Timemania (until the draw 1943 on May 30, 2023)

Occurrences on positions

Total occurrences of each number on each drawn position

Position 1
Number
Actual frequency
Expected frequency
1
169
2
156
3
147
4
145
5
130
6
128
7
109
8
92
9
77
10
75
11
81
12
73
13
67
14
49
15
64
16
40
17
32
18
29
19
44
20
24
21
30
22
18
23
14
24
17
25
23
26
20
27
11
28
8
29
6
30
7
31
8
32
9
33
11
34
4
35
1
36
4
37
4
38
2
39
1
40
4
41
1
42
1
43
0
44
2
45
0
46
1
47
1
48
3
49
0
50
0
51
0
52
0
53
0
54
1
55
0
56
0
57
0
58
0
59
0
60
0
61
0
62
0
63
0
64
0
65
0
66
0
67
0
68
0
69
0
70
0
71
0
72
0
73
0
74
0
75
0
76
0
77
0
78
0
79
0
80
0
No.
Actual
occurrences
Expected
occurrences
Last
draw
Shortest
interval
Longest
interval
Current
interval
Average
interval
1
169
170
1932
1
64
11
0.0870
2
156
157
1939
1
54
4
0.0803
3
147
145
1924
1
84
19
0.0757
4
145
133
1928
1
69
15
0.0746
5
130
123
1940
1
69
3
0.0669
6
128
113
1931
1
66
12
0.0659
7
109
104
1935
1
86
8
0.0561
8
92
95
1920
1
75
23
0.0473
9
77
87
1883
1
132
60
0.0396
10
75
80
1899
1
140
44
0.0386
11
81
73
1937
1
84
6
0.0417
12
73
66
1925
1
135
18
0.0376
13
67
61
1927
1
164
16
0.0345
14
49
55
1936
1
186
7
0.0252
15
64
50
1943
1
119
0
0.0329
16
40
45
1726
2
176
217
0.0206
17
32
41
1814
2
208
129
0.0165
18
29
37
1863
2
203
80
0.0149
19
44
33
1894
2
274
49
0.0226
20
24
30
1853
1
290
90
0.0124
21
30
27
1879
1
348
64
0.0154
22
18
24
1938
22
325
5
0.0093
23
14
22
1844
9
467
99
0.0072
24
17
19
1942
1
370
1
0.0087
25
23
17
1881
7
180
62
0.0118
26
20
15
1783
7
208
160
0.0103
27
11
14
1770
15
472
173
0.0057
28
8
12
1807
31
585
136
0.0041
29
6
11
1656
9
587
287
0.0031
30
7
9
1806
35
674
137
0.0036
31
8
8
1777
136
370
166
0.0041
32
9
7
1766
43
340
177
0.0046
33
11
6
1845
21
504
98
0.0057
34
4
5
1808
7
1113
135
0.0021
35
1
4
1105
1105
1105
838
0.0005
36
4
4
1860
110
1092
83
0.0021
37
4
3
1410
45
594
533
0.0021
38
2
3
1009
402
607
934
0.0010
39
1
2
1604
1604
1604
339
0.0005
40
4
2
885
64
616
1058
0.0021
41
1
1
1895
1895
1895
48
0.0005
42
1
1
623
623
623
1320
0.0005
43
0
1
1943
0.0000
44
2
1
1089
90
999
854
0.0010
45
0
0
1943
0.0000
46
1
0
1406
1406
1406
537
0.0005
47
1
0
161
161
161
1782
0.0005
48
3
0
519
8
397
1424
0.0015
49
0
0
1943
0.0000
50
0
0
1943
0.0000
51
0
0
1943
0.0000
52
0
0
1943
0.0000
53
0
0
1943
0.0000
54
1
0
1878
1878
1878
65
0.0005
55
0
0
1943
0.0000
56
0
0
1943
0.0000
57
0
0
1943
0.0000
58
0
0
1943
0.0000
59
0
0
1943
0.0000
60
0
0
1943
0.0000
61
0
0
1943
0.0000
62
0
0
1943
0.0000
63
0
0
1943
0.0000
64
0
0
1943
0.0000
65
0
0
1943
0.0000
66
0
0
1943
0.0000
67
0
0
1943
0.0000
68
0
0
1943
0.0000
69
0
0
1943
0.0000
70
0
0
1943
0.0000
71
0
0
1943
0.0000
72
0
0
1943
0.0000
73
0
0
1943
0.0000
74
0
0
1943
0.0000
75
0
0
1943
0.0000
76
0
0
1943
0.0000
77
0
0
1943
0.0000
78
0
0
1943
0.0000
79
0
0
1943
0.0000
80
0
0
1943
0.0000
  • The table shows data on the amount of draws with numbers in each position, considering all drawins of timemania (with the current matrix).
  • Actual occurrences are the real total occurrences of numbers on the referred position.
  • Expected occurrences are the expected occurrences for each number on the referred position, according to mathematical probability.
  • Last draw is the most recent draw in which the number was drawn on the referred position.
  • Shortest interval is the shortest gap between draws in which the number was drawn in the referred position.
  • Longest interval is the longest gap between draws in which the number was drawn in the referred position.
  • Current interval is the current interval since the last draw in which the number was drawn in the referred position.
  • Average interval is the general average of intervals between draws in which the number was drawn in the referred position (until the last draw in which the number was drawn in the referred position).
  • The actual and expected occurrences tend to get closer to each other the largest the sample.